En el Congreso Internacional de Matemáticos de 1900, David Hilbert presentó su famosa lista de 23 problemas considerada central para el desarrollo de las matemáticas del nuevo siglo: el sexto problema erala axiomatización de las teorías físicas. Entre las nuevas teorías físicas del siglo la única que tenía todavía que recibir tal tratamiento para finales de la década de 1930 era la mecánica cuántica. De hecho, la mecánica cuántica se encontraba, en ese momento, en una condición de crisis de fundamentos, similar a aquella que pasó la teoría de conjuntos a comienzos de siglo, enfrentando problemas tanto de naturaleza filosófica como técnica; por otra parte, su aparente indeterminismo no había sido reducido, como Albert Einstein creía que debía ser en orden de que la teoría se hiciera satisfactoria y completa, a una explicación de forma determinista; además, todavía existían dos formulaciones heurísticas distintas, pero equivalentes: la supuesta mecánica matricial de Werner Heisenberg y la mecánica ondulatoria deErwin Schrödinger, pero no había todavía una formulación teórica unificada satisfactoria.
Después de haber completado la axiomatización de la teoría de conjuntos, von Neumann empezó a enfrentarse a la axiomatización de la mecánica cuántica. Inmediatamente, en 1926, comprendió que un sistema cuántico podría ser considerado como un punto en un llamado espacio de Hilbert, análogo al espacio de fase 6N dimensional (N es el número de partículas, 3 coordenadas generales y 3 momentos canónicos para cada una) de la mecánica clásica, pero con infinidad de dimensiones (correspondiente a la infinidad de estados posibles del sistema) en su lugar: las cantidades de la física tradicional (i.e. posición y momento) podrían estar, entonces, representadas como operadores lineales particulares operando en esos espacios. La física de la mecánica cuántica era, debido a eso, reducida a lasmatemáticas de los operadores lineales Hermitianos en los espacios de Hilbert. Por ejemplo, el famoso principio de incertidumbre de Heisenberg, según el cual la determinación de la posición de una partícula impide la determinación de su momento y visceversa, es trasladado a la no-conmutatividad de los dos operadores correspondientes. Esta nueva formulación matemática incluía, como clases especiales, las formulaciones tanto de Heisenberg como de Schrödinger y culminó en el clásico de 1932 Las Fundamentaciones Matemáticas de la Mecánica Cuántica. De cualquier manera, los físicos, en general, terminaron prefiriendo otra aproximación diferente a la de von Neumann (la cual era considerada extremadamente elegante y satisfactoria por los matemáticos). Esta aproximación, formulada en 1930 por Paul Dirac y que estaba basada en un extraño tipo de función (la llamada delta de Dirac), fue severamente criticada por von Neumann.
De cualquier forma, el tratamiento abstracto de von Neumann le permitió también confrontar el problema extremadamente profundo y fundamental del determinismo vs. el no-determinismo y en el libro demostró un teorema de acuerdo con el cual es imposible que la mecánica cuántica sea derivada por aproximación estadística de una teoría determinista del mismo tipo de la utilizada en mecánica clásica. Esta demostración contenía un error conceptual, pero ayudó a inaugurar una línea de investigaciones que, gracias al trabajo de John Stuart Bell en 1964 sobre el teorema de Bell y los experimentos de Alain Aspect en 1982, finalmente demostraron que la física cuántica, en definitiva, requiere una noción de la realidad substancialmente diferente de la manejada en física clásica.
En un trabajo complementario de 1936, von Neumann probó, junto con Garret Birkhoff, que la mecánica cuántica también requiere una lógica substancialmente diferente de la lógica clásica. Por ejemplo, laluz (los fotones) no puede pasar a través de dos filtros sucesivos que estén polarizados perpendicularmente (v.g. uno horizontal y el otro vertical) y por eso, a fortiori, la luz no puede pasar si un tercer filtro, polarizado diagonalmente, es adicionado a los otros dos ya sea antes o después de ellos en la sucesión. Pero si el tercer filtro es puesto entre los otros dos, los fotones sí pasarán. Éste hecho experimental es traducido en términos lógicos como la no-conmutatividad de la conjunción, es decir:
También se demostró que las leyes de distribución de la lógica clásica,
y
no son válidas para la teoría cuántica. La razón para esto es que una disyunción cuántica, difierente al caso de la disyunción clásica, puede ser verdadera incluso cuando ambos disyuntos son falsos y esto es, a su vez, atribuible al hecho de que es frecuente el caso, en mecánica cuántica, de que un par de alternativas son semánticamente determinadas, mientras cada uno de sus miembros son necesariamente indeterminados. Esta última propiedad puede ser ilustrada con un simple ejemplo. Supóngase que se está tratando con partículas (como electrones) de espín (momento angular) semi-entero, por lo que sólo hay dos posibles valores: positivo o negativo. Entonces, el principio de indeterminación establece que el espín, relativo a dos direcciones diferentes (v.g. x y y), resulta en un par de cantidades incompatibles. Supóngase que el estado φ de cierto electrón verifica la proposición «el espín del electrón x es positivo». Por el principio de indeterminación, el valor del espín en la dirección y será completamente indeterminado para φ. Entonces, φ no puede verificar ni la proposición «el espín en la dirección de y es positivo» ni la proposición «el espín en la dirección de y es negativo». Sin embargo, la disyunción de la proposición «el espín en la dirección y es positivo o negativo» debe ser verdadera para φ. En el caso de la distribución es, por lo tanto, posible tener una situación en la cual
mientras
Con respecto a uno de los pilares teóricos en los que se sustentan los principios de la Mecánica Cuántica (la "Constante de Planck" en este caso), resulta que varios programas de Inteligencia Artificial coinciden en afirmar que "la unidad de medida de esta Constante contiene implícitamente ("disimulado") un término físico en su denominador, el cual tiene implicaciones muy notables!. Si les resultase de interés analizar estos resultados, hacédmelo saber a mi dirección e-mail para enviarles los textos.
ResponderEliminar